NUMBER THEORY AND DIOPHANTINE ANALYSIS.

151. Proposed by E. B. ESCOTT, Ann Arbor, Mich.

In the recurring series $u_0=3$, $u_1=0$, $u_2=2$, ..., where the scale of relation is $u_{n+8}=n_{n+1}+u_n$, prove that u_p is always divisible by p when p is prime. Is the converse true?

Solution by DR. L. E. DICKSON, The University of Chicago.

In this problem, we have $u_k = S_k$ for every k, where S_k denotes the sum of the kth powers of the roots of $x^3 - x - 1 = 0$. By the formula of Girard (often attributed to Waring),

(1)
$$S_n = n \ge \frac{(m+l-1)!}{m! l!} (\begin{array}{c} \text{summed for all integers} \ge 0 \\ \text{for which } 2m+3l = n. \end{array})$$

Hence, for *n* a prime number, $u_n = S_n$ is divisible by *n*.

The problem admits of a wide generalization. Given any integers m, p_1, \ldots, p_m , with m positive, the recursion formula

(2)
$$z_{x+m} + p_1 z_{x+m-1} + p_2 z_{x+m-2} + \dots + p_m z_x = 0$$

has the solution^{*} $z_y = \sum_{i=1}^{m} C_i a_i^x$, in which the C's are arbitrary, while a_1, \ldots, a_m are the roots of

(3)
$$a^m + p_1 a^{m-1} + p_2 a^{m-2} + \dots + p_m = 0.$$

The C_i may be expressed in terms of $z_0, z_1, \ldots, z_{m-1}$, and conversely. For suitably chosen (integral) values of the latter, we may make $C_1=1, \ldots, C_m=1$. Hence when relation (2) is arbitrarily assigned, we may construct an infinite series of integers z_0, z_1, \ldots , for which the recursion formula is (2) and such that

(4)
$$z_k = S_k = \text{sum of } k \text{th powers of roots of (3).}$$

Then z_p is given by Girard's formula

$$S_p = p \Sigma \frac{(-1)^{\lambda_1 + \dots + \lambda_m} (\lambda_1 + \dots + \lambda_m - 1)!}{\lambda_1! \lambda_2! \dots \lambda_m!} p_1^{\lambda_1} \dots p_m^{\lambda_m},$$

summed for all integers $\lambda_i \geq 0$ for which $\lambda_1 + 2\lambda_2 + ... + m\lambda_m = p$. Hence, for $p_1=0$, and p a prime, z_p is divisible by p.

The only solution of the a's are distinct (Encyclopaedie Mathematik, Vol. 1, p. 984).