NUMBER THEORY AND DIOPHANTINE ANALYSIS.

151. Proposed by E. B. ESCOTT, Ann Arbor, Mich.

In the recurring series $u_{0}=3, u_{1}=0, u_{2}=2, \ldots$, where the scale of relation is $u_{n+3}=n_{n+1}+u_{n}$, prove that u_{p} is always divisible by p when p is prime. Is the converse true?

Solution by DR. L. E. DICKSON, The University of Chicago.
In this problem, we have $u_{k}=S_{k}$ for every k, where S_{k} denotes the sum of the k th powers of the roots of $x^{3}-x-1=0$. By the formula of Girard (often attributed to Waring),

$$
\left.S_{n}=n \Sigma \frac{(m+l-1)!}{m!l!} \quad \begin{array}{l}
\text { summed for all integers } \geqq \tag{1}\\
\text { for which } 2 m+3 l=n .
\end{array}\right)
$$

Hence, for n a prime number, $u_{n}=S_{n}$ is divisible by n.
The problem admits of a wide generalization. Given any integers m, p_{1}, \ldots, p_{m}, with m positive, the recursion formula

$$
\begin{equation*}
z_{x+m}+p_{1} z_{x+m-1}+p_{2} z_{x+m-2}+\ldots+p_{m} z_{x}=0 \tag{2}
\end{equation*}
$$

has the solution* $z_{y}=\sum_{i=1}^{m} C_{i} a_{i}{ }^{x}$, in which the C 's are arbitrary, while a_{1}, \ldots, a_{m} are the roots of

$$
\begin{equation*}
a^{m}+p_{1} a^{m-1}+p_{2} a^{m-2}+\ldots+p_{m}=0 . \tag{3}
\end{equation*}
$$

The C_{i} may be expressed in terms of $z_{0}, z_{1}, \ldots, z_{m-1}$, and conversely. For suitably chosen (integral) values of the latter, we may make $C_{1}=1, \ldots$, $C_{m}=1$. Hence when relation (2) is arbitrarily assigned, we may construct an infinite series of integers z_{0}, z_{1}, \ldots, for which the recursion formula is (2) and such that

$$
\begin{equation*}
z_{k}=S_{k}=\text { sum of } k \text { th powers of roots of (3). } \tag{4}
\end{equation*}
$$

Then z_{p} is given by Girard's formula

$$
S_{p}=p \Sigma \frac{(-1)^{\lambda_{1}+\ldots+\lambda_{m}\left(\lambda_{1}+\ldots+\lambda_{m}-1\right)!}}{\lambda_{1}!\lambda_{2}!\ldots \lambda_{m}!} p_{1}^{\lambda_{1}} \ldots p_{m}{ }^{\lambda_{m}},
$$

summed for all integers $\lambda_{i} \geqq 0$ for which $\lambda_{1}+2 \lambda_{2}+\ldots+m \lambda_{m} \rightleftharpoons p$. Hence, for $p_{1}=0$, and p a prime, z_{p} is divisible by p.

The only solution of the a 's are distinct (Encyclopaedie Mathematik, Vol. 1, p. 934).

